Optimization over Structured Subsets of Positive Semidefinite Matrices via Column Generation

نویسندگان

  • Amir Ali Ahmadi
  • Sanjeeb Dash
  • Georgina Hall
چکیده

We develop algorithms to construct inner approximations of the cone of positive semidefinite matrices via linear programming and second order cone programming. Starting with an initial linear algebraic approximation suggested recently by Ahmadi and Majumdar, we describe an iterative process through which our approximation is improved at every step. This is done using ideas from column generation in large-scale linear programming. We then apply these techniques to approximate the sum of squares cone in a nonconvex polynomial optimization setting, and the copositive cone for a discrete optimization problem.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Singular value inequalities for positive semidefinite matrices

In this note‎, ‎we obtain some singular values inequalities for positive semidefinite matrices by using block matrix technique‎. ‎Our results are similar to some inequalities shown by Bhatia and Kittaneh in [Linear Algebra Appl‎. ‎308 (2000) 203-211] and [Linear Algebra Appl‎. ‎428 (2008) 2177-2191]‎.

متن کامل

LMI Approximations for Cones of Positive Semidefinite Forms

An interesting recent trend in optimization is the application of semidefinite programming techniques to new classes of optimization problems. In particular, this trend has been successful in showing that under suitable circumstances, polynomial optimization problems can be approximated via a sequence of semidefinite programs. Similar ideas apply to conic optimization over the cone of copositiv...

متن کامل

Convex Optimization For Non-Convex Problems via Column Generation

We apply column generation to approximating complex structured objects via a set of primitive structured objects under either the cross entropy or L2 loss. We use L1 regularization to encourage the use of few structured primitive objects. We attack approximation using convex optimization over an infinite number of variables each corresponding to a primitive structured object that are generated ...

متن کامل

Exploiting Sparsity in Semidefinite Programming via Matrix Completion I: General Framework

A critical disadvantage of primal-dual interior-point methods compared to dual interior-point methods for large scale semidefinite programs (SDPs) has been that the primal positive semidefinite matrix variable becomes fully dense in general even when all data matrices are sparse. Based on some fundamental results about positive semidefinite matrix completion, this article proposes a general met...

متن کامل

DSOS and SDSOS Optimization: More Tractable Alternatives to Sum of Squares and Semidefinite Optimization

In recent years, optimization theory has been greatly impacted by the advent of sum of squares (SOS) optimization. The reliance of this technique on large-scale semidefinite programs however, has limited the scale of problems to which it can be applied. In this paper, we introduce DSOS and SDSOS optimization as more tractable alternatives to sum of squares optimization that rely instead on line...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Discrete Optimization

دوره 24  شماره 

صفحات  -

تاریخ انتشار 2017